首页> 外文OA文献 >Scalable Deep Traffic Flow Neural Networks for Urban Traffic Congestion Prediction
【2h】

Scalable Deep Traffic Flow Neural Networks for Urban Traffic Congestion Prediction

机译:城市交通拥挤的可扩展深交通流神经网络   预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tracking congestion throughout the network road is a critical component ofIntelligent transportation network management systems. Understanding how thetraffic flows and short-term prediction of congestion occurrence due torush-hour or incidents can be beneficial to such systems to effectively manageand direct the traffic to the most appropriate detours. Many of the currenttraffic flow prediction systems are designed by utilizing a central processingcomponent where the prediction is carried out through aggregation of theinformation gathered from all measuring stations. However, centralized systemsare not scalable and fail provide real-time feedback to the system whereas in adecentralized scheme, each node is responsible to predict its own short-termcongestion based on the local current measurements in neighboring nodes. We propose a decentralized deep learning-based method where each nodeaccurately predicts its own congestion state in real-time based on thecongestion state of the neighboring stations. Moreover, historical data fromthe deployment site is not required, which makes the proposed method moresuitable for newly installed stations. In order to achieve higher performance,we introduce a regularized Euclidean loss function that favors high congestionsamples over low congestion samples to avoid the impact of the unbalancedtraining dataset. A novel dataset for this purpose is designed based on thetraffic data obtained from traffic control stations in northern California.Extensive experiments conducted on the designed benchmark reflect a successfulcongestion prediction.
机译:跟踪整个网络道路的拥堵是智能交通网络管理系统的关键组成部分。了解交通流量以及由于高峰时间或事故引起的拥堵发生的短期预测可以帮助此类系统有效地管理交通并将其引导至最合适的弯路。通过利用中央处理组件来设计许多当前的交通流量预测系统,其中通过对从所有测量站收集的信息进行汇总来进行预测。但是,集中式系统无法扩展,并且无法向系统提供实时反馈,而在分散式方案中,每个节点都根据邻近节点中的本地电流测量值来预测自己的短期拥塞。我们提出了一种基于分散式深度学习的方法,其中每个节点都基于相邻站点的拥塞状态实时准确地预测其自身的拥塞状态。而且,不需要来自部署站点的历史数据,这使得所提出的方法更适合于新安装的站点。为了获得更高的性能,我们引入了一个规范化的欧几里得损失函数,该函数比低拥塞样本更倾向于高拥塞样本,以避免不平衡训练数据集的影响。基于从加利福尼亚北部交通管制站获得的交通数据设计了一个新的数据集,在设计的基准上进行的大量实验反映了成功的交通拥堵预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号